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SUMMARY

An i1nvestigatlion of the problem of the buckling of parallel simply
supported tension and compression members commected by equally stiff and
equally spaced elastlc deflectlonal springs 1s made as an approximation
to the problem of the effect of finlte stiffness of rlibs and tension
surface on the buckling load of the compression surface of a wing. Charts
relating compressi, 3> buckling load, deflectional spring stiffness, and the
ratio of the flexural stiffness of the msmbers — for the case of equal
tengion and compression loads — are glven for tension and compression
members having two, three, four, and an infinite nmumber of spans.

INTRODUCTION

In the deslgn of eircraft structures, the calculation of the
compresslve buckling load of the surface of a stressed—skin wing is
important. For simpliclty, the tension surface of the wing can be assumed
to be equivalent to a rigid foundation and the shear webs and ribs can be
agsumed to be equivalent to rigid supports that dlvide the compression surface
into small panels so that the compressive buckling load of the wing
surface 1s the buckling load of the small panels. Actuaslly, however,
the shear webs and ribs and the tenslon surface have finlite stiffness;
therefore, the buckling load of the compresslon surface 1s reduced
because of the deflectlon of the supports.

The effect of finite rib stiffness on the compressive buckling load
of a wing surface has been investigated in a number of papers. (See
references 1 to 6,) In the present paper an approximastion to the problem
of considering the effect of the finite stiffness of both the ribs and the
tenglon surface on the buckling load of the compression surface of a wing
is made by investligating the buckling of paraillel simply supported
tension and compression members connected by equally stiff and equally
spaced elastic deflectional springs. (See fig. 1.) An exact Rayleigh—
Ritz anslysis of thils problem 1s given 1n the appendix.
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SYMBOIS
x distance parallel to members
Je deflection of compression member
Y deflection of tension member
N number of spens
L length between springs
(EI)C flexural stiffness of compression member
(ED)q flexural stiffness of tension number
EL
Tr = .(—-_)I.
(EI)g
PC critical compressive load
PT load applied to tension member
(EI)q

JC =

¥

(EI)q

JT = P

T

P.L
L/ I nondimengional buckling-load parameter il ¢l
(ET),
= L
L/ Ip nondimensional tenslion—Load parameter (50)
T
C deflectlon spring constant, force per wnit deflection
S nondimensional deflectlional-spring-stiffness
c1.3
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m, n, s integers
k Integer defining location of a spring
q number of buckles

RESULTS AND DISCUSSION

Nondimenslonal charts are presented as figures 2 to 5 for the
buckling load of parallel simply -supported tension and compression
members connected by elastlc deflectional springs, for members with two,
three, four, and an infinite number of spans and for equal tension and
compression loads. The buckling load can be obtained from these figures
when the flexural stiffness of the tension and compression membsrs and
the deflectional svpring stiffness are known. The curves were obtained
from the exect stability equations derived by the Rayleigh-Ritz energy
method in the appendix for the more general case of unequal tension and
compression loads.

The figures show that the effect of finite flexural stiffness of the
tension member is to increase appreciably the deflectional spring stiffness
necessary to attaln a given buckling load above the stiffness required when
the tension member is infinitely stiff. The maximm load attalnsble is
the load for Buler buckling of the compression member with nodes at the
deflectional—spring supports.

The discontinuities of slope of the curves of Pigures 2 to 4 correspond
to sudden changes in the buckling mode. Tension and compression members
having two spans, for instance, buckle first with one buckle until a
limiting value of spring stiffness 1s reached then buckle in two helf—waves
with a node at the spring support. The curves for members having an
infinite number of spens (fig. 5) are smooth because the buckling mode
changes continuously. Curxves for the case of a tenslon member with infinite
flexural stiffness are identical with the curves of reference 7 for columms
on deflectional springs alone.

In each of the figures the horizontal line 1s the curve for Euler
buckling of the compression member with nodes at the spring supports.
Because the supports do not deflect, the load 1s independent of their
spring stiffness. The value of the spring stiffness at the intersection
of the horlzontal line and the curves for buckling of the members with
deflection of the spring supports is therefore the maximum value that is
needed in any design because larger values of spring stiffness do not
Increase the buckling load.

P —— S




L NACA TN No. 1823

JTLIUSTRATIVE EXAMPLE

Two simply supported members are connected by three equally spaced
intermediate elastic springs and are restrained against deflecting out
of the plane of the springs. Each member conslsts of a 5-inch by 5-inch

by -L-inch steel e having a moment of inertia of 10 inches™ and a
7 16 ne

length between spring supports of 120 inches. The constant of the
intermediate springs 1s 8000 pounds per inch. Ons member is to carry

a compressive load and the other 1s to carry a tensile load of equal
magnitude. In order to determine the loads capable of being carried by
the exlsting structure, the followlng procedure is used:

ET
By use of the curve of figure Lt for %__EL =1 and a valus of the
ET
c

deflectional—spring—stiffness parameter

CI3 8000 x 1203

(EI); 30 x 10% x 10

46.1 : v

the buckling-load paremeter is found to be

Pel?
(ET)q

= 8.9

The equal tension and compression loads that can be carrled by the
structure are therefore equal to

8.9 30X 106 x 10
1202

PC =

185,400 pounds

If the tension member were infinitely stiff, the buckling loed of
the compression msmber would be increased to the load for Euler buckling
of the column between spring supports
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g
[l

%2—9 185,400

205,600 pounds

and would remaln at that value if the spring constant were reduced to a
value ag low as

¢ = 337
46.1

= 5850 pounds per inch

Langley Aeronautical ILaboratory
National Advisory Commlttee for Aeronautics
Langley Air Force Basge, Va., January 4, 1949
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APPENDTX
DERTVATION OF THE STABILITY CRITERIONS

A column, subjected to a compressive load Py, 1s stabilized by

equally stiff and equally spaced elastic deflectional springs that rest
on & member subjected to a tension load Pp. (See fig. 1.) When the

column buckles the structure deflects as a unlt because the buckling of
the compression member, in general, causes the supporting springs either
to compress or elongate; thus loads are transmitted to the tension member,
and 1t 1s also caused to deflect. The colum buckling load 1s found by
choosing Fourler series to represent the deflectlon curves of the tension
and compresslion members, expressing the emsrgy of the structure in terms

of the unknown Fourier coefficlents, and minimizing the energy wilth respect
to these coefficients. An infinite set of equatlons is obtalned and is
solved by the method used in referemnce T in which the buckling load of
columns on equally spaced deflectional and rotational springs was obtained.

Energy Expressions

Let the deflectlon curve of the buckled columm be denoted by the
Fourler seriles

o]

¥C = E an sin FE (A1)
n=1

and the deflection curve of the tenslion msmber by

Tp = E by sm%‘l (a2)

n=1

Then, the ensrgy of the system consists of the followlng components: The
bending energy stored in the buckled columm

NL 2
(ET)g deYc
Vo = —dx2 dx

2

RO o -
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and the bending energy stored in the tension member

RL .2 \ 2
EI 32y
Vi (EI)p I 4y
2 | o

xt (E_)Ei oy 2 (.Au)
n

b3 i3

The ensrgy stored in the deflectional springs 1s

[(ye - D), kl.]

N—=l| o

=%Z Sy (an-bn) sin mTﬂe (5)
k=1| n=1

The work done by the compressilve loed In moving the two ends of the column
together 1is

Wo

n
%
/\
\_/
5

2 P,
- N—%Z na2 (46)

and that done by the tenslon load is

2 P
=-LL) op?2 (a7)

The work done by the tension load 1s negative inasmuch as the direction of
the shortening of the tension member is opposite that of the load.
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The potential emergy of the system .is equal to

which, from equations (A3) to (A7), is, after simplification,

F_—$EE;3 L <ﬁjc> an® +rZ{ (I‘JL_ Jbe

n=1

2N3S Z z (an — bn)sin (a8)

Minimization

The buckling load may be found by minimizing F with respect to the
undetermined Fourier coefficients e, and Db,. Then

2. =0
dapy
= 1* ML \° 2NS in——— sin nrc_@_{c_ A
(nac) Z(am bm)kz_l T (a9)
(n=1,2,3,...)
and.
F _o
dby,
0 -1
i \2 oI E mxk
=T D.ll'-l-(ﬁc?) nebn——h—; —bm) k=lSinT in"N— (AlO)

(n=l’2,3,.oo)

e ———— - = ¢ e e Mttt il



Equations (A9) and (AlO) may be cambined to glve ome set of egquetions with the coefficlents (a, — bp) as
the wmlmowns:

% K1
3
(an — bp) + 25 = — 4+ L Z(ﬂ-m"!bm) sin BIE g3p Ik, o (a11)
| b /EL\2 2 L, (FL\2 5 R N
n - EEE n r{%. + ;3; ]1] m=1 k=1

(n=1,2,3,...)

except when a, = b,, in which case

nlF - (E%é)eng - nh +-(¥%§>2n2 = Q (Al2)

(n=1,2,3, . « .)

Serles—Form Stablllty Criterlons

The stability criterions may be obtained from equations (All) by the application of the method
of solution of reference T, simplified e great deal by the omission of rotational springs. The
criterions so obtalned are

£2BT °*ON NI VOVH



=

- 1 1
| SFET (o O e -F(ET [T
1 N - 1 )
AR s o e e A
(¢=1,2, . ..N~1)
and

It
2

(ALL)

& e

(¢ = N)

@)

both members have equal deflections and, therefore, the springs ere not compressed and the spring
gtiffness is Indeterminate.

However, when

Equations (Al3) correspond to buckling in g buckles provided that q is less than the mmber of
gpens. PEguatien (All4) is the Buler buckling load for buckling of the columm in N waves with a
node at each spring support. ZXEquetions (a15), vhich were obtained from equatlons (A12),

oT

€28T °ON NI VOVM
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correspond to the case in which both members are subJected to their
respective Euler buckling loads.
Cloged—Form Stability Criterions

The series forms of the stability criterions.(equations (Al3)) may
be put into closed form, and the result is

) L sin -3%
= - 5 + 3
S 2 -£ (l - cosB ﬁg) 2 -L— cos th -~ co8 L
Jo N Jo N Jo
L
sinh —
+ % = + or - =0 (A16)

2,—1’- (l—cos Itg') 2£3 cos n:g—cosh-L—
J7 N Jp N Jp

(e=1,2, .. .8=~1)

Equations (Alk), (Al5), and (Al6) constitute the complete set of
closed—form criterions for the stabillty of parallel tension and compression
members connected by elastic deflectional springs. The correct criterion
for any given values of S and L/,jT ig the one which yields the lowest

value of L/JC .

Equal Tension and Compression Loads

When the tension and compression loads are equal, which would be the
cagse if the structure were an airplane wing subjected to a bending moment,
the stabllity criterions become

gin ginh = L

2 e J =0 (817)

+

L\3 q L 2 (L\3 q 1L
— cos = — cog8 — —f{—\{coB 1= — cosh — —
2(%) ( N Jc) ‘E<39< . N Vr 9

(Q.:l:g.v' . .N-1)

L _
S
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and.

(218)

L:T{
Jo
N\

(¢ = W)

A stability criterion for the case of an infinite number of equally
spaced springs may be readily obtained as in reference 7 by expanding

equation (A17) and ninimizing the result with respect to %; this procedure
glves

L 1 L I 1l L
cos8 — + cosh — — sin — sinh —
cos TLI% = Jc 3 VE JC + S Jc —_ F JC (Al9)
u(.L_)E L 1L
JC Ja VT I
Substitution of equation (A18) in equation (Al7) ylelds, after soms
simplification,
L\2 1L L
2 '3—) cosh = J—' - CcO8 J—)
_ Y - ¢ 02_ (420)
sinh & Lo in Lo
AR I
L L .
Vr Jc I

Equations (A18) and (A20) are the stability criterioms for the case of an
infinite number of equally spaced springs when the tension and compression
loads are equal.
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Flgure 1.— Parallel tension and compression members connected by elastic deflectional springs.
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Figure 2.— Stability curves for equally loaded tenslon and campression membera having two spans.
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Flgure 3.— Stebllity curves for equally loaded tension and compression members having three spans.
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Figure 4.— Stebility curves for equally loaded tension and compression members having four spans..
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Flgure 5.— Stability curves for equally loaded tension and compression membere having an infinite

number of spans.
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